
JOURNAL OF APPROXIMATION THEORY 76,1-20 (1994)
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Interpolation problems with periodic splines of defect 2 on an equidistant lattice
with two shifted interpolation nodes in each knot interval are considered. Then the
periodic Hermite-spline interpolation problem is obtained as a special case. Using
generalized Euler-Frobenius polynomials and exponential Euler splines, a simple
criterion for the existence and uniqueness of solutions of the considered inter
polation problem can be given. This solves an old open problem and generalizes
the well-known result on periodic Lagrange-spline interpolation obtained by
G, Meinardus, G, Merz, and H. ter Morsche. An extension to cardinal spline
interpolation is also described. ' 1994 Academic Press, Inc.

1, INTRODUCTION

It has been known for a long time that the investigations concerning the
construction of spline interpolants as well as the problem of existence and
uniqueness of solutions of spline interpolation problems on an equidistant
lattice unavoidably lead to the Euler-Frobenius polynomials and their
generalizations (cf. [II]), Recently we described an efficient algorithm for
the computation of periodic Hermite-spline interpolants on the equidistant
lattice Z (cf. [8]), This method uses a generalization of Euler-Frobenius
polynomials which is based on B-splines with multiple knots and can be
extended to shifted nodes too,

Now we are mainly interested in the investigation of the existence and
uniqueness of solutions, This problem has been completely solved only in
the case of Lagrange-spline interpolation (r = 1) [4, 7). For r ~ 2 results on
the correctness of cardinal and periodic Hermite-spline interpolation on an
equidistant lattice without shifted nodes may be found in [3, 2, 5).

In this paper we consider a periodic spline interpolation problem based
on spline functions of defect 2 with two shifted interpolation nodes '0 +.i
and 'I + .i ('0' '1 E (0, I]) in each knot interval [j,.i + I). Then we obtain
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the periodic Hermite-spline interpolation problem in the special case

'0= 'I'

The purpose of this paper is to present a simple criterion for the
existence and uniqueness of solutions of our extended spline interpolation
problem. Contrary to [6,9, 10] we prefer a new generalization of Euler
Frobenius polynomials which is based on B-splines with double knots.
A representation of the symbol of the interpolation problem considered is
given and its behaviour on the unit circle is studied. Our result can easily
be extended to cardinal spline interpolation.

2. MAIN RESULTS

Let N, mEN and r E {I, ..., m} be fixed. By SZ.r we denote the linear
space of all N-periodic real functions SE c m

- r(R) with

for all t E [0, 1] and for all j E Z, where Pm signifies the set of all real
polynomials of degree ~m defined on [0, 1]. The elements of S::'.r are
called N-periodic spline functions of degree m and defect r on the equidistant
lattice Z. It is well known that dim S;:'.r = rN. Furthermore, let y?1 E R
(j E Z, k = 0, ..., r - 1) with y?) = y):)Nbe given N-periodic data, which can
be completely described by the vectors

(k = 0, ... , r - 1).

In the case of Lagrange-spline interpolation (r = 1) with shift parameter
,E (0, 1], we wish to find an N-periodic spline function s ES;:'.l satisfying
the interpolation conditions

S(i+,)=V(OI
• • J (j E Z). (1)

Then the well-known existence- and uniqueness theorem of G. Meinardus,
G. Merz, and H. ter Morsche holds:

THEOREM 1 (cf. [4, 7]). Let N, mEN and, E (0, 1] be fixed. Then the
interpolation problem (1) is uniquely solvable for any data vector y(OI ERN if
and only if one of the following conditions is satisfied:

(i) N odd,

(ii) N even and m even and, E (0, 1),

(iii) N even and m odd and, -# 4.
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Remark. The mth Euler polynomial Em on [0, 1] may be defined by

3

EoU) == 1

E;"(t) = Em~ l(t) (m EN),

(t E [0, 1]),

Em(O) + Em(l) = 0 (m EN).

Then the conditions (ii) and (iii) of Theorem I are equivalent to the
condition

(iv) N even and EmCr)i'O.

In the case r = 2, we consider the following spline interpolation problem:
For given shift parameters To, TIE R with 0 < To::::; TI::::; 1, we try to find an
N-periodic spline function s E S::. 2 such that

(jE Z),

(jE Z),
(2)

where s[j+ To, j + T1] denotes the first order divided difference. The jth
Bernoulli polynomial Hj on [0, I] may be defined by

UE [0, 1]),

and

rHjU) dt =0
o

(jE N).

Our main result, proved in Section 6, is the following

THEOREM 2. Let N, mEN (N, m~2) and To, TI ER with 0<To::::;T 1 ::::; 1
be fixed. Then the spline interpolation problem (2) possesses a unique solution
for any given data vectors ylOI, y(I)ER N if and only if

(3 )

Here Hm[TO' T1 ] denotes the divided difference of the mth Bernoulli
polynomial.

Remark. In the case T = To = T1 of Hermite-spline interpolation, the
condition (3) is equivalent to

The behaviour of the zeros of the Bernoulli polynomials on [0, 1] is
known. In particular, if m is even, then the Hermite-spline interpolation
problem (2) is uniquely solvable if and only if T i 0, 1}.
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EXAMPLES. In the case of quadratic spline interpolation (m, r) = (2, 2),
the condition (3) is equivalent to

In the cubic case (m,r)=(3,2), we obtain from (3)

2(T6+TOT] +Tn-3(To +T!l+ I #0.

In particular, if T= To = TI' then the corresponding Hermite-spline inter
polation problem (2) has a unique solution if and only if

T~ n(l +~,/h ~(I-A)}·

3. GENERALIZED EULER-FROBENIUS POLYNOMIALS

Now we introduce the generalized Euler-Frobenius polynomials with the
help of B-splines. Consider equidistant knots with multiplicity r,

Xj+rk := k (k E Z, j = 0, ... , r - I).

Let B;.m E em r(R) denote the normalized B-spline of degree m and defect
r with the knots X b Xk+l'''''Xk+m+I' Then the N-periodic B-spline P;'m
is given by

p;...,(X):= L B;.m(x + nN)
n= x

Observe that the N-periodic B-splines

(xER).

P;+ rk.m(X) = P;'m(x - k) (j = 0, ..., r - I; k = 0, ... , N - I )

form a basis of the spline space S~'.r'

The m th Euler-Frohenius polynomial H/~ of multiplicity I and v.'ith shiji
parameter tE [0, 1J is defined by the equation (cf. [12J)

m

H/~(t, z) := L BL,,(v + I)Z',
\,=0

where Z E C, mEN. Note that the classical Euler-Frobenius polynomial
reads m!H/~(I,z) (cf. [II]),

If s E S~'.I of the form

iii \

s(x)= L ckPci.m(x-k)
k~O
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satisfies the Lagrange-interpolation condition (I), then it holds that

H~,(r, V)c = y(o)

with c:=(co, ...,CN_1)TER
N

, where

(6)(m~ I),

denotes the fundamental circulant matrix (cr. [8]). Therefore the inter
polation problem (I) is uniquely solvable if and only if the circulant matrix
H~(r, V) is nonsingular. This is satisfied if all eigenvalues of H~,(r, V) are
different from zero, i.e., if H~(r, wi);iO for J=O, I, ... , N-I, where IV:=

e21tiiN. We call the polynomial H ~, the symbol of periodic Lagrange-spline
interpolation with shift parameter r.

The following hold:

zH~(l,z)=H~(O,z) (m~I), (4)

H~(t,I)=1 (m~I), (5)

1
H1(t O)=-tm

m , ,
m.

a
at H~(t, z)= (l-z) H~ 1(t, z) (m ~ 2). (7)

A list of properties of m! H,~ can be found in [12].
Now it is our goal to define a symbol for the generalized interpolation

problem (2) like H~ in the Lagrange case.
With the help of the generalized Euler-Frobenius polynomials of

multiplicity 2 with shift parameter t E [0, I], given by

Lm/2J

HJ,m(t, z):= L BJ,m(J + t)zl,
i~O

Lm/2J

H~,m(t, z):= L B~,m(J+ t)zl,
i~O

we define for m ~ 2

Hfm(to,z) I
Hf,m[to• tl](z)

with to, t l E [0, I], ZEC Again HJ,m[to, t)](z) and Hf,n,[t o, t)](z) denote
divided differences with respect to t.
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THEOREM 3. Let N, mEN (N, m ~ 2) and 0 < '0";;;" ,,;;; 1 be given. Then
the inlerpolation problem (2) is uniquely solvable if and only if

(j = 0, ..., N - 1),

where w := e2nilN.

Proof We follow the ideas in [8J for the computation of Hermite
spline interpolants. Let yIO), y(l) E R be the given data vectors. If s E S;~.2 of
the form

N--]

s(x)= L (ckPJ.m(x-k)+dkP;.m(x-k»
k~O

satisfies the interpolation conditions (2), then we get

(
Hlm('o, V) H~ ('0' V) )(C) (y(O»)

HJ.m['o, 'lJ(V) H~.j~o, ,]](V) d = y(l)

with c:=(co, ... ,cN_dT, d:=(do, ...,dN_JlTER N
• By definition of H;;, it

follows immediately that

H;;,(,o, ,], V)c = Hi,,,,[ '0' ,] J(V) y(OI - H~.m( '0' V)y(l),

H;;,(,o, '" V)d = HJ.m('o, V) y(11_ HJ.m[TO, T,J(V)y(OI.

Hence, our periodic interpolation problem (2) is uniquely solvable for any
data vectors y(OI and y(') if and only if the circulant matrix H;;,(,o, 'I, V)
is nonsingular, i..e, if H;;,(To, T" H,i) # 0 for j = 0, ... , N - 1. I

We call the polynomial H;;, the symbol of Ihe spline interpolalion
problem (2).

EXAMPLES. For m = 2 we have

H~,2(t, z) = 21(1- I), Hi,2(1, z) = t 2+ (1- t)2Z,

H;(to, t l , z)=2(IO t 1 -(1-10 )(1-1])Z).

For m= 3,

Hl3(t'Z)=12(3-~I)+~(1-1)3Z,

2 1
3

2 (5 I)H1,3(t,z)=1+(1-I) 2"1+ 2 z,

2 3 { 2 2H 3 (t O,t"Z)=2 tot,-[to(1-to)+t,(l-ttl+2tol](1-to)(l-tJlJz

+ (1- (0 )2(1- td 2z 2
}.
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4. EULER-FROBENlUS POLYNOMIALS OF MULTIPLICITIES 1 AND 2

7

First we establish some properties of the Euler-Frobenius polynomials
Hl m and H~.m'

LEMMA I. Let mEN (m ~ 2), t E [0, 1] be fixed. Then we have

zH j: m(1,z)=H}m(O,z) (j=0,1),

Hlm(t, 1) + H~.m(t, 1) =1,

(8)

(9)

( lO)

02 {1 2 1 2 }
OIHo.m(t,z)=m Lm/2jHo.m-l(t,Z)-Um+1)/2jHl.m-t(t,z) ,

02 {I 2 z 2 }
8t

H l. m(t,z)=m Um+1)/2jHl.",-I(I,Z)-Lm/2jHo.",-I(t,Z) .

Proof 10. Since Bt m(O) = B~ m(O) = 0 and Bt m(Lm/2j + 1) =
B~ m(Lm/2j+ 1)=0, we s~e for m~2 and j= 1, 2 that .

Lm/2J L",/2J - 1

H}",(O, z) = L B}m(k)zk = L B;'m(k + 1)Zk + 1

k~1 k~O

Lm/2J

= Z L Bj:",(k + 1) Zk = zH j:",(I, z).
k~O

2°. Let IE [0,1]. By the well-known partition of unity property of the
B-splines we get

Lm/2J

Ht.m(t, 1) + H~.m(t, 1) = L (Bt.",(k + I) + B~.m(k + 1) =1.
k~O

3° The relation (10) follows immediately from the recursion formulas for
B-splines with double knots

In order to analyze H;" we introduce the determinant L1~ by

,,2 ( 7) '_1 H;,(to, z) H;'_I(lo, z) I
L1 m to,t\,w.- I t

H",[to,ll](Z) Hm_1[lo,II](Z)
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with to, tIE [0, 1], z E C, where H,: [to, t 1](z) (n = m, m - 1) denotes the
divided difference of H,:(t, z) with respect to the variable t.

THEOREM 4. Let to, tIE (0, I] and z E C he given. Then we have

with

(n! )4
C211:= --(2)1 'n .n

(n!)4(n + I)
c .=-----

211 + 1 • (2n + I )!

Proof The proof follows from several statements.

1". The Euler-Frohellius polynomial H,:, (m? 2) is uniquely determined hy
H~, l' il the relations (4), (5), and (7) are satisfied, where H :(1, z) :=
t(1 -z) + z.

Assume that the functions PI (t, z) and P2(t, z) satisfy the relations

( II )

(12)

and

(13 )

We consider QU, z):= PI(t, z)- P 2U, z). Then (II) implies that (i3/ct)Q(t,z)
=0, i.e., Q(t,z)=q(z). Using (12), we find that (1-z) q(z)=O. Hence
q(z) == 0 for z E C, z =f- I. Finally, from (13) we have q( I) = 0 and therefore
Q(t, z) == O.

2 0 Let 0 < t ~ I and Z E C he fixed. Furthermore let Am (m? 2) denote the
square matrix which is recursively determined hy

I (Lm/2J Lm/2J )
Am(z)=;;;Am I(Z) l(m+ 1)/2Jz l(m+ 1)/2J

where

Then for m ? 2,

(
H,:,(t, z) ) = A (7) (H~.mU, Z))
1m'" 2· •Hm J(t, Z) Hl.m(t, z)

(m?3),
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Using I" we prove inductively, that for m ~ 3, the components of
Am(H~.m' H~."Y satisfy the relations (4), (5), and (7). From (10) we get

(
(a/at) H~ m(t, Z))

Am(z) 2'
(a/at) H I.m(1, z)

I (Lm/2 j Lm/2 j )=;Am _ 1(z) l(m+l)j2Jz l(m+I)/2J

(
I/Lm/2 j H~.m _1(1, z) - l/l(m + I )/2J H~./1/ 1(1, Z))

xm 1/l(m+l)/2jHrm L(t,z)-z/Lm/2jH~.m l(t,Z)

(
HJ/1/_1(t,Z)) 1 _ (H~, I(I,Z))

=(1-z)Am _ 1(z) Hi (~) =( -.d HI (t z) .
l.m - 1 t,.:;. m 2 '

Hence (7\ holds. The relation (4) follows immediately from (8). By (9) the
relation (5) is established if A/1/( I) = CDholds. But this is a simple conse
quence of the definition of Am and the fact that Lm/2J + l(m + 1)/2J = m.
Now 2° follows from 1°.

3'. The assertion of Theorem 4 holds.

From 2° it follows that

Applying the multiplication rule of determinants we obtain

,,1;,(10,1 1 , z)=det(A/1/(z» H;,,(lo, tJ, z).

We prove inductively that for m ~ 2

(14 )
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(nW
C2" = - (2n)!n'

For m = 2 we have

I (2Z
2: det I + 2

(n)!4(n+l)
c2" + , = - (2n + I ) !

Assume that the assertion holds for m - I. Then

1 (Lm/2J Lm/2J )
det(Am(z»=;det(Am ,(z)det l(m+ l)j2Jz l(m+ l)j2J

=~ l;j lm; 1j<1-Z)det(Am ](z)).

Using the induction hypothesis we arrive at (14). I

5. A PROPERTY OF THE SYMBOL H;"

In order to establish Theorem 2, we must investigate the eigenvalues
of H,~(to,t"V). In Section6 we find that IH;"(to,t,,wi)I>O for
j= I, ..., N-I, to, t, E(O, IJ. The remaining casej=O is treated by

THEOREM 5. LeI to, I] E (0, 1J he fixed. Then for m ~ 2 we have

where B",[to, t,J denotes the difference of the Bernoulli polynomial Bm • The
constant d", is independent of to and I,.

Proof I D. For fixed to, tIE (0, 1J and m ~ 2, the following holds:

H~,(tO' thI) = Hrm[to, t \](1).

First we show the relation

For t=to=t] we get (15) differentiating (9). For to#/, we have

(15 )

H 0
2 m[to, t\](1)+ H 2

, ",[to, t 1 ](I)=_I- (HG",(t o, 1)+ H~ ",(to, I)
. , to - t,' .

-Hlm(t" I)-Hf,,,,(t,, 1))=0.
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Thus, from (9) it follows that

H;" (t0' t l' 1) = H~.n,[ to, t I ] ( 1) (Hg. m(t0' I) + H~.m(t 0, I ))

=H~.n,[to, t 1]( 1).

2 0
• The assertion of Theorem 5 holds for to = t 1 = t E (0, 1], i.e.,

From 10 and (10) we conclude that

II

Now, by (9) we have

Furthermore (8) implies that

(16 )

f H;,,(t, t, l}dt=H~.m(1, l}-Hrm(O, 1}=0. (17)

Note that H~.m[t, t](1) is a polynomial of degree m - 1 with respect to t.
Therefore, by the definition of Bm the assertion Y follows from (16), (17),
and the fact

3°. The assertion of Theorem 5 holds for to#t 1 •

From 1c and 2 0 it follows that

By integration we find
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with constants d", and rtn • Thus,

Remark. The constant d", can be computed easily. We find

4"((2n -1 )!!)2
d2,,= ((n-I)!)2n '

6. EXPONENTIAL EULER SPLINES

Now we show that for any fixed to, tIE(O, I] and B",[ta,t,];ioO the
matrix H ;',(ta, t h V) is nonsingular, i.e., that

(j = 0, I, ..., N - 1)

with It' := e2tti
/
N

•

Unfortunately, ideas similar to those in [4, 7] cannot be applied,
because we are not able to describe the zeros of H ~ for any ta, tIE [0, 1]
and for any m ~ 2. Indeed, we are only interested in the case Izi = 1. Our
main tool will be the symhol of cardinal interpolation with centered B-splines
of degree mEN, which is defined for a fixed shift parameter x E R by

,. ,_" ,( ~ .) liu
(j? ".(.\, u) .- L Ba. '" x + 2 - J e ,

fEZ

U E [ - TC, TC]

(cf. [I]). The following identities and properties of (j?:" are used in our
further considerations.

THEOREM 6 (cf. [1]). For mEN, xER, and -TC~U~TC, we have

(i) (j?:,,(X± 1, u)=e±iU(j?~(x, u),

(j?~,(X, -u) = qJ~,( -x, u) = qJ;,,(x, u),

(m ~ 2).(ii) :\,(j?~,(x,U)=(I-e-iU)(j?~_I(X+1'U)

(iii) For 0 ~ x ~ 1and 0 < u < TC,

(j?~,(x, u) = (Xm_I(X, u) e iu
/
2+ 13m- I(X, u),
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f
li2

r1. m _ l (x, u)=2 Re[e--;ui2qJ~, J(r, u)] dr,
1/2 - x

f3m-I(X, u) = 2 fi
2

-
X

Re[qJ~,_ l(r, u)] dr.
o

13

Now let m ~ 1 and 0 < Uo < n he fixed. Then we have

(iv) The function arg qJ ~Jx, uo) is strictly increasing for x E [0, 1]. In
particular, argqJ~(O,uo)=O, argqJ~,(!,uo)=uo/2, argqJ~,(I,uol=uo.

(v) The function IqJ~,(x, uoll is strictly decreasing for x E [0, D and
strictly increasing for x E U, I]. Particularly, IqJ ~,(X' uo)1 > 0 for x E [0, 1].

(vi) We have

0< arg cp~(x, uol < xUo

xUo < arg cP ~(x, uo)< Uo

for 0 < x <!.

for !<x< 1.

(vii) Further, qJ ~(x, n) is a real and for x E [0, I] strictly decreasing
function with qJ~,(!, n) = 0.

We consider the determinant

cp!" I(XO +!, u) I
qJ~ J[xo+!,xJ+!J(u)

(m~2)

with XO,XIER, uE[-n,n], where qJ~,[XO,Xl](U) and CP:II J[xo,x 1](u)
denote the divided differences with respect to the variable x. The connec
tion between qJ~ and .d ~, is described in the fol1owing

LEMMA 2. For to,tjE(O, l],-n<u~n, and mEN (m~2), we have

< {e i
l/
lm 21m2(1- t 1 - t u).d 2 t t e'u _ < 'Y m 0, 1,

m( 0' l' )- elU1m l1m2(1_t l_t U)
't'm 2 0, 2 I'

ifm is odd,

ifm is even.

Proof Using (i) and the symmetry relation Bb.m(x) = Bb.,.Jm + 1 - x) it
fol1ows from the definition of CP~, that for m ~ 1

64076'1-2

< {eIU(m-lli2mJ(I_X u)
H1( IU) < 'Ym~'

m x, e = e,umi2qJ~O_X, u)
ifm is odd,

if m is even.
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For m ~ 2 odd we see from (i) that

,42 (t t iU) = iu( m - I) I qJ :"(l - 10, u)
LJmO'I,e e 1[1 I ]()qJm -to, -II u

=eiu(m - 2)qJ~,(l - 10 , I - I I' u).

qJ~'_1(1-/0,U) I
qJ:,,-I[1-/0 ,1- /1](U)

The relation follows analogously for m ~ 2 even. I

By Theorems 4 and 5 and Lemma 2 it suffices to show that

(j= 1, ..., N -1, xo, Xl E R, Ixo-x.I < 1).

The following identities are immediate consequence of the definition of qJ~

and (i).

LEMMA 3. FormEN(m~2),xo,XIER,-Jr<u~Jr,wehave

qJ~J(XO,XI,U)=qJ;;'(XI'XO'U), (18)

qJ~J(XO,XI'-U)= -e-iUqJ~,(-xo, -Xl' U)=qJ;;'(.X"o,X j , u), (19)

qJ~,(1+Xo, 1+ XI' u)= -e3iUqJ~(1-Xo,1-XI, u). (20)

For XI - xoi Z,

(Xl - (xo± I» qJ~(xo ± I, XI' u) = e ±iU(X I - xo) qJ~,(XO' XI' u),

(X, ± l-xo) qJ~I(XO' XI ± I, u)=e±iU(xl-xo) qJ~(xo, XI' u).

For xl-Xo=kEZ\{O},

qJ~(Xo+ k, xo, u) = O.

For XO=XI,

(21)

(22)

By Lemma 3 we may restrict our investigations to the intervals 0 < u ~ Jr

and xo, Xl E (0,1].

THEOREM 7. LeI x o, XI E (0, I] be fixed. Then for m ~ 3 and 0 < u ~ Jr,

we have
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Proof Since (/8) we need only consider the case 0 < Xo ::s; X I ::s; /.

l c
. First let x=xo=x].

By (20) it can be supposed that O::s; x::S; i. From the definition we have

Using the properties (i) and (ii) it follows for m ~ 3 that

Thus it remains to show that for m ~ 3 and 0 < u ::s; n,

(23)

The case u = n follows readily from property (vii). Now let UoE (0, n) be
fixed.

1Q .1. The assertion holds for x = 0 and x = i.
On the one hand for 0 < t <! and m ~ / we have from (vi)

I n
0< arg ({Jm(t, uo) < uot < 2'

Therefore, we obtain 1m q>~,(t, uo) > 0 and Re ({J~(t, uo) > O. Hence we may
write

1m [q>~(t, uo)]
0< [I )] <tan uot.Re ({Jm(t, Uo

This yields

I 1 2 1/2 Re[q>~(t, uo)]
!({Jm(t, uo)! < Re[({Jm(t, uo)](l + tan uot) = ,

cos uot

l.e.,

Re[q>~(t, uo)] > Iq>~(t, uo)l cos uot.

On the other hand it follows from (vi) that

n Uo . '2 I Uo--< --<arg[e-- WO
, (fl (t u )]<u t--<O2 2 '1'm '0 0 2 .

(24)
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Thus, we get Im[e IUo i2cp:,,(t, un)] <0 and Re[e iuoi2cp:,/t, un)] >0. Hence,

Uo Im[e Iuoi2cp~Jt, un)] , (I )
tan-> - . ,0 I >tan --t Un,

2 Re[e "'0 "CP",(t, un)] 2

which implies

Re [e - iUOi2cp },,(t, un)]

cosn-t)un

and therefore

Re[e iuo/2cp~(t, un)] < Icp~,(t, un)\ cosn- t}un . (25)

Now, using the recursion relation (iii) and monotonicity property (v) we
find, from (24) and (25),

1,/2

Icp}" + 1(0, un)1 = 1/3",(0, un)1 > 2 f jcp},,(t, uo)1 cos uot dt
o

> Icp:,,(~, uo)! sinc(uo/2)

and

1/2

Icp:II+ In, un)1 = liX",(~, uo)1 < 2 f Icp :,,(t, uo)1 cosn - t)uo dt
o

< !cp:,,(O, uo)1 sinc(uo/2).

The required inequality (23) follows for x =°and x =~, since

,(0, uo) CP:"
,(0, un) cP,'"

1c.2. The assertion holds for 0 < x < 4.
Let m ~ 3 and Uo E (0, n) be fixed. For 0 < x < ~ we have, from (vi),
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Furthermore,

i.e.,

Hence,

Together with (v) this completes the proof of 10 .2.

Then q>~ can be simplified to

17

with m ~ 2 and U E (0, rr]. Thus it remains to show that for any m ~ 3,
O<u~rr,

First, let O<XO<Xl~t. Then it follows from (v) and (vii) that for
o< Uo ~ rr and m ~ 2,

Hence the inequality (26) holds. Analogously the assertion can be shown
for t~ X o < X 1 ~ 1. Therefore we need only consider the case 0 < X o < t <
Xl ~ 1. For 0 < X o < t and XI = t we find from (i), (v), and (vii)

Iq>~(t, uo)1 = 1q>~(0, uo)1 > Iq>~(xo, uo)l,

1q>~-l(XO + t, uo)1 > 1q>~-l(t, uo)1 = Iq>~-ld, uo)1 (m ~ 2),

which implies (26).
Finally, for 0 < X o < t < Xl < 1 and 0 < Uo < rr it follows from (i) and (vi)

that



18

and
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(m;;:: 2).

Thus, by (v), we have !cp;',(.eto, XI' uo)1 >0. For uo=n and O<xo<~<

x I < I we find from (vii) that

Remark. Let E j denote the jth Euler polynomial restricted to the
interval [0, I]. Then we have

cp,I,,(~ + f, n) = (-1 t" + 2).2 2/1/E/I/(1)

cp)"(f,n)=(-I)I/l/+ lli2 2"'E,,,(f)

if m is even,

if m is odd.

Hence the statement Icp;,,(xo, x I' n)\ > 0 is equivalent to the Haar condition
for the polynomials E",( . ) and Em 1(')'

Now we can show the following

THEOREM 8. Lef '0' 'I E (0, 1] be fixed. Then for m;;:: 2, we have

(-n<u";;n)

if and only if

Proof The case m = 2 follows from the example. Consider m ;;:: 3. First
assume that u:f O. Using (21), (19), and (22) it follows from Theorem 7
that for m;;::3 and fo, fIER, fo-fd!Z\{O},

Icp;,,(to, fl' u)/ >0

with - n < u,,;; n, u:f O. Thus by Lemma 2,

( - n < u ,,;; n, u :f 0)

with 0 < r0";; 'I ,,;; 1. Hence, by Theorem 4 we find

( - n < u";; n, u :f 0).

Together with Theorem 5 this completes the proof. I
Now the assertion of Theorem 2 follows readily from Theorems 3 and 8.
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7. CARDINAL SPLINE INTERPOLATION
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The result of Theorem 2 on existence and uniqueness of solutions in the
periodic case can be extended to cardinal spline interpolation. Let mEN
(m ~ 2) and r E {I, ..., m} be fixed. By Sm.• we denote the linear space of aH
real functions sEcm-r(R) with

s(j-l +t)= Pj(t)

for all tE [0,1].
We consider the foHowing cardinal spline interpolation problem: For

fixed real data sequences (yjOI)jE z, (yj! »)jE Z and given shift parameters '0'

'IER with O<'o~'I~l, we wish to find a spline function SESm . 2 , such
that

s( " +, )= VIOl. ° . .I

s[j+,o, }+'I] = yy)
(jEZ),

(jE Z).
(27)

With the introduction of the linear operator U by

U( ,,(k)) ._ (,,(kl )Jj jEZ'- .'.j-I jEZ (k=O, I),

it foHows that the spline interpolation problem (27) is uniquely solvable if
and only if the infinite Toeplitz matrix H;;,(,o, 'I, U) is nonsingular, i.e., if

(izi = I).

Hence we have as an immediate consequence of Theorem 8:

THEOREM 9. Let mEN (m~2) and '0' 'IER with O<'o~,,~I be
fixed. Then the cardinal spline interpolation problem (27) possesses a unique
solution s E Sm,2 for any data sequences (yjO»)jE z, (yjll)jE Z E 12 if and only
if Bm[,o, 'I] ¥O. .
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